求解高等数学题。求不定积分 ∫﹙㏑x﹚²dx 和∫cos﹙㏑x﹚dx
发布网友
发布时间:2024-10-24 12:11
我来回答
共3个回答
热心网友
时间:2024-10-31 11:06
∫﹙㏑x﹚²dx
=(㏑x)²*x-∫x*2㏑x*(1/x)dx
=x(㏑x)²-2∫㏑xdx
=x(㏑x)²-2[x㏑x-∫x*(1/x)dx]
=x(㏑x)²-2x㏑x+2∫dx
=x(㏑x)²-2x㏑x+2x+C
∫cos﹙㏑x﹚dx
=∫cos(㏑x)dx
=x*cos(㏑x)-∫x*[-sin(㏑x)]*(1/x)dx
=xcos(㏑x)+∫sin(㏑x)dx
=xcos(㏑x)+[x*sin(㏑x)-∫xcos(㏑x)*(1/x)dx]
=xcos(㏑x)+xsin(㏑x)-∫cos(㏑x)dx
移项合并
=(x/2)[cos(㏑x)+sin(㏑x)]
热心网友
时间:2024-10-31 11:03
∫﹙㏑x﹚²dx =x﹙㏑x﹚² -∫xd﹙㏑x﹚²= x﹙㏑x﹚² -2∫x﹙㏑x﹚(1/x)dx
=x﹙㏑x﹚² -2∫㏑xdx=x﹙㏑x﹚² -2x(lnx-1)+c
∫cos﹙㏑x﹚dx=xcos﹙㏑x﹚-∫xdcos﹙㏑x﹚
=xcoslnx+∫xsin﹙㏑x﹚(1/x)dx
=xcoslnx+∫sin﹙㏑x﹚dx
=xcoslnx+xsinlnx-∫xcos﹙㏑x﹚(1/x)dx
=xcoslnx+xsinlnx-∫cos﹙㏑x﹚dx
∫cos㏑xdx=(1/2)x(coslnx+sinlnx)+c
热心网友
时间:2024-10-31 11:05
利用分部积分