因式分解(2a-b-c)^3+(2b-c-a)^3+(2c-a-b)^3 用轮换法
发布网友
发布时间:2024-10-24 01:12
我来回答
共1个回答
热心网友
时间:2024-10-24 13:52
方法一:
设a-b=x b-c=y c-a=z
原式=(x-z)^3+(y-x)^3+(z-y)^3
=(y-z)(x^2-2xz+z^2+x^2-xy+yz-zx+y^2-2xy+x^2)+(z-y)^3
=(y-z)(3x^2+y^2+z^2-3xz+yz-3xy)-(y-z)(y^2-2yz+z^2)
=(y-z)(3x^2-3xz+3yz-3xy)
=3(y-z)[x(x-z)-y(x-z)]
=3(z-y)(y-x)(x-z)
=3(2c-a-b)(2b-a-c)(2a-b-c)
方法二:
设a-b=x b-c=y c-a=z
原式=(x-z)^3+(y-x)^3+(z-y)^3
由公式a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)得
(x-z)^3+(y-x)^3+(z-y)^3-3(x-z)(y-x)(z-y)=(x-z+y-x+z-y)[(x-z)^2+(y-x)^2+(z-y)^2-(x-z)(y-x)-(y-x)(z-y)-(z-y)(x-z)]
∵x-z+y-x+z-y=0
∴a^3+b^3+c^3=3abc
∴原式=3(z-y)(y-x)(x-z)
=3(2c-a-b)(2b-a-c)(2a-b-c)