搜索

...^2+bx+c(a>0),方程f(x)-x=0的两个根x1,x2满足0<x1<x2<1/a_百度知...

发布网友 发布时间:2024-10-23 17:53

我来回答

4个回答

热心网友 时间:2024-11-05 01:21

画出图像得f(x)>x在(0,x1)上显然成立,由题意知f(1/a)>0,0<(1-b)/2a<1/a,f(0)>0,解之b/a+c>0,-1<b<1,c>0,由题意知x0=-b/2a,即证x1>-b/a,又因为x1=(1-b-根号下b-1的平方减4ac)/2a,联立两方程的b+ac>0,显然成立,所以2得证,再证f(x)<x1①当-1<b≤0时,f(x)-x1在x=x1处取得最大值,即证f(x1)-x1≤0,显然成立②当0<b<1时,f(x)-x1在x=x1处取得最大值,即证f(x1)-x1≤0,显然成立综上f(x)<x1得证

热心网友 时间:2024-11-05 01:18

f(x)-x=ax�0�5+bx+c-x
因为x1,x2是方程f(x)-x=0的两根
所以f(x)-x=a(x-x1)(x-x2)
当x∈(0,x1)时,x-x1<0,x-x2<0,且a>0
所以a(x-x1)(x-x2)>0,f(x)-x>0,f(x)>x
因为f(x)-x1
=a(x-x1)(x-x2)+x-x1
=(x-x1)[a(x-x2)+1]
=(1/a)(x-x1)[x-x2+1/a]
=(1/a)(x-x1)[(1/a-x2)+x]
<0
所以f(x)<x1
即当x∈(0,x1)时,x<f(x)<x1

f(x)=a(x-x1)(x-x2)+x
=a[x�0�5-(x1+x2)x+x1x2]+x
=ax�0�5-[a(x1+x2)x-1]x+ax1x2
设m,n是f(x)=0的两个根,因为x=x0是f(x)的对称轴
所以(m+n)/2=x0,m+n=2x0
又由韦达定理得
m+n
=[a(x1+x2)-1]/a
=(x1+x2)-1/a
=x1-(1/a-x2)
因为1/a>x2,所以1/a-x2>0
所以m+n<x1
即2x0<x1,x0<x1/2

热心网友 时间:2024-11-05 01:21

数学
家教QQ1016871819
f(x)-x=ax²+bx+c-x
因为x1,x2是方程f(x)-x=0的两根
所以f(x)-x=a(x-x1)(x-x2)
当x∈(0,x1)时,x-x1<0,x-x2<0,且a>0
所以a(x-x1)(x-x2)>0,f(x)-x>0,f(x)>x
因为f(x)-x1
=a(x-x1)(x-x2)+x-x1
=(x-x1)[a(x-x2)+1]
=(1/a)(x-x1)[x-x2+1/a]
=(1/a)(x-x1)[(1/a-x2)+x]
<0
所以f(x)<x1
即当x∈(0,x1)时,x<f(x)<x1
f(x)=a(x-x1)(x-x2)+x
=a[x²-(x1+x2)x+x1x2]+x
=ax²-[a(x1+x2)x-1]x+ax1x2
设m,n是f(x)=0的两个根,因为x=x0是f(x)的对称轴
所以(m+n)/2=x0,m+n=2x0
又由韦达定理得
m+n
=[a(x1+x2)-1]/a
=(x1+x2)-1/a
=x1-(1/a-x2)
因为1/a>x2,所以1/a-x2>0
所以m+n<x1
即2x0<x1,x0<x1/2

热心网友 时间:2024-11-05 01:19

1、开口向上a>0,a有3个选择,且不经过原点,c≠0,只有3个选择,b剩下有3个选择 共3*3*3=27条2、x正负半轴都有交点,令y=0,方程ax²+bx+c=0有正负两根,c/a<0,a≠0,当a>0有3种选择,c只有一种选择,b有3种选择;当a<0只有一种选择,c有3种选择,b有3种选择共有3*1*3+1*3*3=18条3、 即方程ax^2+bx+c=0至少有一个负根,只要在2小题中再加上一个根在x负半轴上另一个也在负半轴或者等于0的情况,若另一个根为0,x=0时y=0即c=0.当a>0,-b/(2a)<0 b>0,有3*2六种,若另一个根也小于0,c/a>0,c>0,且要保证b^2-4ac>0,只有2种情况b=3,a=1,c=2(或a=2,c=1),共8种;当a<0,-b/(2a)<0,b<0这种情况不存在,所以共有18+8=26条
声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top