已知函数f(x)=2sinxcosx-1+2sinx2,(1)求f(x)的最小正周期和最大值
发布网友
发布时间:2024-10-23 12:36
我来回答
共1个回答
热心网友
时间:2024-10-24 02:50
解
(1)
f(x)=2sinxcosx-1+2sin²x
=sin2x-cos2x
=√2sin2xcosπ/4-√2cos2xsinπ/4
=√2sin(2x-π/4)
T=2π/ω=2π/2=π
f(x)max=√2
(2)若f(α/2+π/8)=(3√2)/5,α是第二象限角
则√2sin[2(α/2+π/8)-π/4]=√2sinα=3√2/5
sinα=3/5
则cosα=-4/5
sin(π/3-α)=sinπ/3*cosα-cosπ/3*sinα=√3/2*(-4/5)-1/2*3/5=-(2√3)/5-3/10
cos(π/3+α)=cosπ/3*cosα-sinπ/3*sinα=1/2*(-4/5)-√3/2*3/5=-2/5-(3√3)/10
数学辅导团为您解答,不理解请追问,理解请及时选为满意回答!(*^__^*)