搜索
您的当前位置:首页专升本高数真题及答案解析

专升本高数真题及答案解析

时间:2021-07-03 来源:乌哈旅游
专升本高数真题及答案解析

高等数学是专升本考试的一门重要科目,对于许多考生来说,高等数学的难度是一个挑战。在备考过程中,了解历年的真题以及对应的答案解析是非常重要的。本文将为大家介绍一些专升本高数真题以及详细的答案解析,希望对大家的备考有所帮助。 第一题:求函数y = x^2 - 3x + 2的极值。 解析:要求函数的极值,首先需要求出函数的导数。对于给定的函数y = x^2 - 3x + 2,可以分别对x^2、-3x和2求导。

导函数为y' = 2x - 3。要求函数的极值,即要求导函数等于0,得到2x - 3 = 0,解得x = 3/2。 然后,我们继续计算导函数的二阶导数,即y'' = 2。因为y''大于零,所以我们可以确定在x = 3/2处,函数y = x^2 - 3x + 2取得最小值。 将x = 3/2代入原函数中,得到y = (3/2)^2 - 3(3/2) + 2 = -1/4。所以函数y = x^2 - 3x + 2的极小值为-1/4。 第二题:已知函数f(x) = x^3 - 6x^2 + 9x - 2,求f(x)的单调增区间。 解析:要求函数的单调增区间,首先需要求出函数的导数。对于给定的函数f(x) = x^3 - 6x^2 + 9x - 2,可以分别对x^3、-6x^2、9x和-2求导。

导函数为f'(x) = 3x^2 - 12x + 9。要求函数的单调增区间,即要求导函数大于0。我们可以利用一元二次方程的求解方法,将导函数等于0求出x的值。 化简方程3x^2 - 12x + 9 = 0,得到x^2 - 4x + 3 = 0。将方程因式分解为(x - 1)(x - 3) = 0,解得x = 1或x = 3。 我们可以得到一个区间(-∞, 1)和(3, +∞)。然后,我们可以选取这两个区间各一个点,代入导函数,来判断相应区间内函数的单调性。 当x取小于1的数时,如x = 0,代入导函数得到f'(0) = 3(0)^2 - 12(0) + 9 = 9,大于0,说明这个区间内函数单调增。 当x取大于3的数时,如x = 4,代入导函数得到f'(4) = 3(4)^2 - 12(4) + 9 = 9,大于0,说明这个区间内函数单调增。 综上所述,函数f(x) = x^3 - 6x^2 + 9x - 2的单调增区间为(-∞, 1)和(3, +∞)。 通过以上两道题目的解析,我们可以发现专升本高数真题中,涉及到求极值和单调性的问题较为常见。这些题目要求考生掌握函数的导数和二阶导数公式,以及一元二次方程的求解方法。因此,在备考过程中,重点复习这些内容是非常重要的。

除此之外,还有一些其他经典的高数题目,如曲线的切线和法线、函数的极限、函数的逼近等等。要在考试中取得较好的成绩,考生需要对这些题目进行充分的练习和理解,并学会将理论知识应用到具体问题的解决过程中。 总之,对于备考非常重要。熟悉真题并掌握解题方法,可以帮助

考生提高解题效率,增加应试的自信心。希望通过本文的介绍,能对大家的备考有所帮助。祝愿大家取得好成绩!

因篇幅问题不能全部显示,请点此查看更多更全内容

Top